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Frogs in Random Environment

S. Yu. Popov1

Received March 28, 2000

We study the so-called frog model: Initially there are some ``sleeping'' particles
and one ``active'' particle. A sleeping particle is activated when an active particle
hits it, after that the activated particle starts to walk independently of everything
and can activate other sleeping particles as well. The initial configuration of
sleeping particles is random with density p(x). We identify the critical rate of
decay of p(x) separating transience from recurrence, and study some other
properties of the model.
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1. INTRODUCTION AND RESULTS

In this note we study the problem of recurrence�transience for random
motions in random media. Apparently, F. Solomon in ref. 10 was the first
to treat the problems of such kind: He studied one-dimensional random
walk in random environment. The model of ref. 10 has been studied exten-
sively since then; see ref. 6 and references therein. Some attention was given
to random walks in random environment in more complex spaces, e.g.,
trees (see ref. 9 and references therein), words from a finite alphabet, (1)

Zd (but in random environment not of Solomon's type).(3, 5) Branching
random walks (which sometimes exhibit different mechanisms of transience�
recurrence) in random environment are studied in ref. 2 (one-dimensional
random environment of Solomon's type) and in ref. 4 (many-dimensional
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random environment similar to ref. 5). As opposed to the cited papers, here
the random motion in question is, in some sense, something in the frontier
between random walk and branching random walk (cf. Lemma 2.2 in
Section 2.1 below). Let us describe the model.

At time 0, there is an ``active'' particle at site 0 # Zd, d�3, and also an
infinite number of ``sleeping'' particles in other sites of Zd (note that in
some sites there may be more than one particle, and in some sites there
may be no particles at all). The active particle starts to perform a discrete-
time simple random walk (SRW), i.e., at each unit of time it jumps to one
of its 2d neighbors chosen with uniform probability. When an active par-
ticle enters a site which contains some sleeping particles, all those become
active and start to perform SRW independently. There is no interaction
between active particles. The folkloric name for this kind of model is ``frog
model;'' currently some attention is given on how to prove a Richardson-
like shape theorem in the case when initially any x{0 contains a sleeping
particle, and what kind of limiting shape there will be.

In this paper, however, we will study properties of another kind. It is
well known that SRW is transient in dimension d�3. Given a collection
of numbers (0�p(x)�1, x # Zd "[0]), d�3, put a sleeping particle into
site x with probability p(x). The configuration of sleeping particles is then
fixed (the case of quenched random environment), and the process is
started. Note that in ref. 4 the random environment is of the same type.
Now, what happens when the particle on its course from 0 to infinity
activates other particles thus increasing the number of independent ran-
dom walkers? It is intuitively clear that if the sleeping particles are dense
enough, then the model can become recurrent, where by recurrence we
mean the following:

Definition 1.1. The frog model is called recurrent, if the site 0 is
visited infinitely often a.s.

Remark 1.1. By Kolmogorov's zero-one law recurrence either
holds for almost all initial configurations of sleeping particles or for almost
no initial configuration of sleeping particles. Also, it is not difficult to verify
that the recurrence is equivalent to any of the following conditions:

v every site x # Zd is hit a.s.

v any sleeping particle will be activated a.s.

So, the main question which we study here is: How can one dis-
tinguish transience from recurrence by looking at the density p(x)? The
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next theorem shows that the critical (i.e., separating transience from
recurrence) rate of decay of the function p(x) is &x&&2:

Theorem 1.1. There exists :cr=:cr(d ), 0<:cr<�, such that

(i) if :<:cr and p(x)�: &x&&2 for all x large enough, then the
process is transient;

(ii) if :>:cr and p(x)�: &x&&2 for all x large enough, then the
process is recurrent.

Notational convention: For what follows, P means probability with
respect to the random environment (i.e., the initial configuration of sleeping
particles), while P and E stand for the probability and expectation related
to the random walk(s) (after the environment is fixed).

Let

A=[the site 0 is visited infinitely often] (1.1)

so the transience in fact means that P(A)<1. The natural question to ask
is whether this implies that P(A)=0, as happens for countable Markov
chains. Our conjecture is that the above is true, but for now we can only
prove a weaker result:

Theorem 1.2. There exists 0<:$�:cr such that if p(x)�:$ &x&&2

for all x large enough, then P(A)=0.

To illustrate the difficulties arising when one attempts to prove the
above conjecture, we consider the modified frog model, and show that for
it the situation 0<P(A)<1 becomes possible. Fix some integer-valued
function N(x) such that N(x)�1 for all x. The construction of the initial
configuration of sleeping particles is the following: a site x{0 contains
N(x) particles with probability p(x) and is empty with probability 1& p(x).
Note that the model which we introduced first is a particular case of
modified frog model with N(x)#1.

Theorem 1.3. For the modified frog model the following holds:

(i) there exists ;1 such that if N(x) p(x)�;1 &x&&2 for all x large
enough, then P(A)=0;

(ii) there exists ;2 , such that if p(x)�;$2 &x&&2&_, N(x)�;"2 &x&_

for some ;$2 , ;"2>0: ;$2;"2�;2 , 0<_<d&2 and for all x large enough,
then 0<P(A)<1.
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2. PROOFS

2.1. Branching Random Walk and Proof of
Theorems 1.2 and 1.3(i)

The main idea of the proof is to dominate the (modified) frog model
by a branching random walk (BRW). Let us first describe the latter model.
Start with one particle at the origin; it performs a SRW in Zd and at each
site x produces some new particles according to some probability distribu-
tion which depends on x. Those newly born particles as well as their
ancestor then jump and produce their offsprings independently. Note that
the particles never die. Let +(x)<� be the mean number of newly born
offsprings at site x. The fact we need about this d-dimensional BRW is the
following:

Lemma 2.1. There exist H, h>0 such that if +(x)=0 on
[x : &x&<H] and

+(x)�h &x&&2 (2.1)

on [x : &x&�H], then BRW is strongly transient. This means that if we
turn the origin into absorbing state, then the mean number of particles
which enter the origin is finite and less than one. This in turn imply that
if there is no absorption in 0, then the total number of visits to the origin
is finite a.s.

Proof. This fact follows from Theorem 5.1 of ref. 8 together with the
remark that the condition on variance of offspring distribution is really
nonessential for the proof of the transience. K

Now, given the functions p(x), N(x), let us define BRW( p,N ) in the
following way: At site x a particle creates nothing with probability
1& p(x), and creates N(x) new particles with probability p(x), so +(x)=
N(x) p(x). To proceed, we need the following

Lemma 2.2. The (modified) frog model is dominated by
BRW( p,N ).

Proof. Instead of constructing a formal coupling of frogs and
BRW( p, N ), we prefer to give a verbal explanation. The idea is the follow-
ing: in the frog model one can postpone the decision about whether to have
a sleeping particle(s) in x until the first moment when some active particle
hits x. After that first hit, we are prohibited to put more sleeping particles
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into x. The latter restriction is absent in the BRW context, which makes
evident the statement of Lemma 2.2. K

The proof of Theorems 1.2 and 1.3(i) now follows from Lemmas 2.1
and 2.2 and a simple observation that in the frog model finite changes of
the configuration of sleeping particles do not affect the fact P(A)=0. K

2.2. Green's Function and Hitting Probabilities

Let !n be a SRW in Zd, d�3, and

g(x, y)= :
�

n=0

P[!n= y | !0=x]

denotes its Green's function. It is known (cf. refs. 7 and 11) that

g(x, y)= g( y, x)= g(0, x& y)=
#d

&x& y&d&2+O(&x& y&&d ) (2.2)

for some #d>0. For x, y, z # Zd denote

qx( y)=P[there exists n�0 : !n= y | !0=x]

qx( y, z)=P[there exists n�0 : !n # [ y, z] | !0=x]

It is straightforward to get (cf., for example, Lemma 2 of ref. 4) that

qx( y)=
g(x, y)
g(0, 0)

, qx( y, z)=
g(x, y)+ g(x, z)
g(0, 0)+ g( y, z)

(2.3)

When &y&z& � �, one gets from (2.2)�(2.3) that

qx( y, z)=(qx( y)+qx(z)) \1&
#$d

&y&z&d&2+O(8)+ (2.4)

where #$d=#d �g(0, 0), 8=&y&z&&min[d; 2d&4].

2.3. Proof of Theorems 1.1 and 1.3(ii)

Proof of Theorem 1.1. From a coupling argument it is easy to check
the monotone property: If p�p$ then the frog model with p is less
recurrent than the frog model with p$. Having in mind Theorem 1.2, one
gets that it is sufficient to prove the following: If : is large enough and

195Frogs in Random Environment



p(x)�: &x&&2 for all x large enough, than the process is recurrent (i.e.,
P(A)=1 P-a.s.).

Before going into details, let us make an important observation. What
matter for recurrence�transience are only the trajectories of the particles;
being the trajectory fixed, one can put there any local time counting
(i.e., one can ``delay'' or ``accelerate'' the particle at will) not affecting the
recurrence�transience. In particular, if several active particles eventually
passed through the place occupied at time 0 by a sleeping particle, then it
does not matter which active particle was the first to pass there. So, if
initially there was a sleeping particle in site x, and we know that some
active particle hit x, we say that x was activated by this active particle, even
if it was not the first to pass through x.

In the course of the proof of this theorem we will use some technique
from ref. 4. Denote

F=[x # Zd : at time 0 the site x contain s a sleeping point]

Of course, F is a random set, and, since its density decays like &x&&2,
Theorem 3.1(a) of ref. 5 implies that it is trapping, i.e., with probability 1
a SRW hits F infinitely often. Define for n�0

Wn=[x # Zd : 3(2n&1)�&x&<2n+1]

Vn=[x # Zd : &x&<2n]

and Fn=F & Wn .
Let us suppose that at some moment there are M active particles

located in x1 ,..., xM # Zd, and that none of those particles ever went out of
the set Vn0

for some n0 . Suppose also that M�2(d&2)(n0+1). Define B0=
[x1 ,..., xM], D0=<. We will make an attempt to construct a sequence
of random sets Bi , Di/Fn0+i&1 such that Bi & Di=<, |B i |=2(d&2) iM,
|Di |=2(d&2)(i&1)M, i�1, and all particles from B i , Di are activated by the
particles from Bi&1 . The construction is described as follows: Suppose that
the sets Bj , Dj , 0� j�i are successfully (we describe the meaning of this
below) constructed. Abbreviate K=|Bi |=2(d&2) iM and m=2n0+i+1. Note
that K�md&2 and

m
4

�&x& y&�
3m
2

(2.5)

for any x # Bi , y # Fn0+i . For all y # Fn0+i let `y be the indicator of the
following event:

[at least one active particle starting from Bi eventually hits y]
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For i�0 denote

GM, n0
i ={ :

y # Fn0+i

`y�(2d&2+1) K=
We call i th inductive step successful if the event Gi happens. In this case

|[ y # Fn0+i : `y=1]|�2d&2K+K

so we can pick 2d&2K+K elements from this set to form the sets Bi+1 ,
Di+1 with |Bi+1 |=2d&2K, |Di+1 |=K.

Before going further, let us make the following remark. Suppose that
initially there were sleeping particles in all the points of two disjoint sets
A� , B� , and that we know that for any x~ # A� there exists y~ # B� such that x~ was
activated by the particle originating from y~ . Then all the random walkers
originating from A� are independent; this is justified by the fact that the
only interaction permitted in this model is when an active particle hits a
sleeping particle. Now, since by construction all the particles from Bi are
activated by ``external'' particles (from Bi&1), for what follows one can sup-
pose that all the random walkers starting from Bi are independent. Using
(2.2)�(2.3) and (2.5), we have

E`y=P[`y=1]

=1& `
x # Bi

(1&qx( y))

�1&\1&
2#$d

3md&2+O(m&d )+
K

�
C1K
md&2 (2.6)

for some C1 .
For some b>0 (which will be chosen later) we consider a partition of

Zd into cubes of size bm2�d:

Zi1 } } } id
=Zd & bm2�d[[i1&1, i1)_ } } } _[id&1, id )]

Consider now those cubes Zi1 } } } id
with even coordinates i1 ,..., id that lie fully

inside the set Wn0+i . The number of such cubes is equal to L&
C2b&dmd&2, with C2=C2(d ). Denote these cubes by Z$1 ,..., Z$L . Note that
if y # Z$j1 , z # Z$j2 , j1{ j2 , then &y&z&�bm2�d. Let & j be the number of
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points from Fn0+i that lie in the cube Z$j . Because p(x)�:�&x&2 and
&x&�m, we have

P[&i=0]� `
x # Z$i

\1&
:

&x&2+
�\1&

:
m2+

bdm2

&exp[&:bd ] (2.7)

Define a subset F $n0+i/Fn0+i in the following way. For 1� j�L with
&j�1 we pick an arbitrary point x$j # Fn0+i & Z$j and put

F $n0+i= .
L

j=1

[x$j ]

i.e., we simply remove some points from Fn0+i until each cube Z$i contains
0 or 1 point from Fn0+i . Note that from (2.7) and the strong law of large
numbers it follows that for any =>0 the proportion of cubes containing no
point from Fn0+i is at most % :=exp[&:bd ]+= for n0 large enough P-a.s.
So, L�|F $n0+i |�L$ :=(1&%) L=C3md&2, where

C3=C2b&d (1&exp[&:bd ]&=)

can be made arbitrarily large by choosing = small, : large, and b=:&1�d.
Let us choose those parameters in such a way that C1C3>2d&2+1.

Now, using (2.6) and Chebyshev inequality, we have

P { :
y # F $n0+i

`y<(2d&2+1) K=
�P { :

y # F $n0+i

(`y&E`y)<&(C1C3&2d&2&1) K=
�

C4

K2 \ :
y # F $n0+i

Var `y+ :
y, z # F $n0+i

y{z

cov(`y , `z)+ (2.8)

for some C4>0.
Analogously to (2.6) one gets that for any y # F $n0+i

E`y�1&\1&
4#$d

md&2+O(m&d )+
K

�
C5K
md&2 (2.9)
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so, by (2.9),

Var `y�E`2
y=E`y�

C5K
md&2 (2.10)

Using (2.4), after elementary calculations one gets

cov(`y , `z)=P[`y=0, `z=0]&P[`y=0] P[`z=0]

= `
x # Bi

_1&(qx( y)+qx(z)) \1&
#$d

&y&z&d&2+O(8)+&
& `

x # Bi

(1&qx( y))(1&qx(z))�
C6

md&2 &y&z&d&2 (2.11)

Note that if z, u are from the same cube, then &y&z&d&2�
2&(d&2) &y&u&d&2, so (supposing without restricting of generality that y is
from Z$1)

:
z # Fn0+i

1
&y&z&d&2� :

L

k=2

1
|Z$k |

:
u # Z$k

2d&2

&y&u&d&2

�
2d&2

bdm2 :
0<&v&�2m

1
&v&d&2&C7b&d (2.12)

with C7=C7(d ). Inserting (2.10), (2.11) and (2.12) into (2.8), one gets that

P(GM, n0
i | GM, n0

0 ,..., GM, n0
i&1 )�1&

C8

K
=1&

C8

M2(d&2) i

with C8=C8(d ), so

P \,
�

i=0

GM, n0
i +�1&

C8

M
:
�

i=0

1
2(d&2) i=1&

C8

M(1&2&(d&2))
(2.13)

Consider now the sets Di , i�1. All the particles from there are independent
and

:
�

i=1

:
x # Di

qx(0)� :
�

i=1

2(d&2)(i&1)M
2(d&2)(n0+i+1)=�

so, by Borel�Cantelli,

P \A } ,
�

i=0

GM, n0
i +=1 (2.14)
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Since F is trapping, M can be made arbitrarily large, so (2.13)�(2.14) imply
that P(A)=1. K

Proof of Theorem 1.3(ii). First, let us show that P(A)<1. Theorem
3.1(b) of ref. 5 implies that, subject to finite changes of the environment,
with positive probability the initial active particle will not activate any-
thing. As such changes do not affect the fact P(A)<1, the proof follows.

Let us now prove that P(A)>0. This fact can be proved using ideas
similar to those of the proof of Theorem 1.1(ii), so we give only an outline
of the proof without going into details.

1. Keep the notation F, Wn , Vn , Fn from the proof of Theorem 1.1(ii).
Note that the condition _<d&2 together with Borel�Cantelli implies that
there is an infinite number of sleeping particles in Zd. For any U/Zd

denote by N(U ) the number of sleeping particles in U, i.e.,

N(U )= :
x # U & F

N(x)

2. Abbreviate m=2n+1. Divide the space into the cubes with side
bm(2+_)�d and consider those which lie in Wn and have even coordinates.
Each cube has (at least) Poisson number of points from F and the number
of cubes is of order md&2&_. Define the set F $n analogously; one can prove
that

|F $n |�C$1 md&2&_ (2.15)

and

N(F $n)�C$2md&2 (2.16)

for all n large enough P-a.s., and C$2 can be made as large as we want by
choosing ;2 large.

3. Choose ;2 such that C$2>2d&2 and suppose that for a given
realization of the random environment (2.15)�(2.16) hold for all n�n0&1.
As F $n/Wn/Vn+1 , one has N(Vn0

)�2(d&2)(n0+1). Suppose now that all
the sleeping particles from Vn0

were activated by the initial particle (clearly,
this happens with positive probability).

Denote B0 :=F & Vn0
, D0 :=<. We are going to construct a sequence

of disjoint sets Bi , Di/F $n0+i&1 such that N(Bi )�2(d&2)(n0+i+1),
N(Di )�2(d&2)(n0+i), and all the particles from Bi , Di are activated by the
particles from Bi&1 . Now we need to show that with positive probability
such construction will be successful.
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4. To this end, suppose that the sets Bj , Dj , 0� j�i are successfully
constructed. Define (recall the definition of `y)

G� i={ :
y # F $n0+i

`y�
(2d&2+1) 2(d&2&_)(n0+i+1)

;"22_ =
Since N(x)�;"22_(n0+i) when x # F $n0+i , we have that

N([ y # F $n0+i : `y=1])�(2d&2+1) 2(d&2)(n0+i+1)

so one can form the sets Bi , Di when G� i happens.
Analogously to (2.8)�(2.12), one can prove that

P(G� i | G� 0 ,..., G� i&1)�1&C$32&(d&2)(n0+i+1)

so P(��
i=0 G� i)>0. Considering now the sets D i , one gets that

P(A | ��
i=0 G� i )=1, so P(A)>0. K
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